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ABSTRACT 

We ask when the space of N-homogeneous analytic polynomials on a Ba- 

nach space is reflexive. This turns out to be related to whether polynomials 

are weakly sequentially continuous, and to the geometry of spreading mod- 

els. For example, if these spaces are reflexive for all N, no quotient of the 

dual space may have a spreading model with an upper q-estimate, and 

every bounded holomorphic function on the unit ball has a Taylor series 

made up of weakly sequentially continuous polynomials (we assume the 

approximation property). Alencar, Aron and Dineen [AAD] gave the first 

example of some properties of a polynomially reflexive space (using T*, 

the originM Tsirelson space); we show that  these properties and others are 

shared by all polynomially reflexive spaces. 

In troduct ion  

In this paper we examine the concept of polynomial reflexivity of a Banach space. 

In doing so, we bring together a number of disparate results concerning polyno- 

mials on Banach spaces, make connections with the theory of bounded analytic 

functions on the unit ball of a Banach space and relate some geometric properties 

of spreading models to hereditary polynomial reflexivity. 

The paper is organized as follows. In Section 1 we consider the relationship 

between a hereditary form of polynomial reflexivity and geometric properties of 

spreading models of either the space or its dual. In Section 2 we define a form 
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of polynomial reflexivity indexed by the positive integers and relate it to some 

properties introduced in [CCG]. 

It has been observed by Alencar, Aron and Dineen [AAD] that in the case 

of Tsirelson's space, T* (see [CS] for the definition), the spaces of polynomials 

PN(X) are reflexive for all values of N. This is then used to show that the space 

of entire functions on T* with the Nachbin topology is reflexive. Alencar, Aron 

and Fricke [AAF] have shown that any operator from N-fold projective tensor 

products of T* into/p is compact. In Section 3 we show how these results can be 

generalized using the concept of polynomial reflexivity and that of a polynomially 

Schur space. 

In Section 4 we consider the structure of the algebra of bounded analytic func- 

tions on the unit ball of a Banach space in the context of polynomial reflexivity, 

showing, for example, that tightness of the algebra implies polynomial reflexivity. 

We also give a partial answer to a question of Davie and Gamelin [DG] concerning 

the identification of evaluations in the spectrum of 7/~(B). 

1. Polynomial reflexivity and geometric properties of spreading 
models 

We begin with some terminology and notation. Let X be a complex infinite- 

dimensional Banach space. An N-homogeneous analytic polynomial on X 

is the restriction to the diagonal of an N-linear form on the N-fold Cartesian 

product of X with itself, or equivalently, a linear functional on the N-fold pro- 

jective tensor product of X with itself. Indeed, given an N-homogeneous analytic 

function P on X, one obtains an N-linear form on X by taking the Nth derivative 

and dividing by N!. The form is related to the polynomial by the polarization 

formula: 
n 

Ap(x],...,xn) = Avg{ei = +l}(1-Ic~)P(~ e~x~). 
i = l  

The form Ap is clearly symmetric (invariant under permutations of the coor- 

dinates). Likewise any bounded symmetric N-linear form will give rise to an 

N-homogeneous analytic polynomial. Such a form can be linearized by taking 

the projective tensor product of X with itself N times and extending the form 

to a linear functional on this tensor product. The subspace of symmetric lin- 

ear functionals is the dual of the symmetric N-fold projective tensor product, 

which is a complemented subspace of the N-fold projective tensor product. The 
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projection is given by extending the following map linearly: 

1 

~6S~ 

We denote the symmetric projective tensor product by ~ N x .  The N-linear form 

Ap associated with P can now be considered a linear functional on @Nx. The 

supremum norm of the polynomial is related to that of the linear functional as 

follows: 
N N 

IIPII <_ IIApII <_ ----~. llPII. 

If we call the space of polynomials PN the above simply says that PN is iso- 

morphic to (@~X)*. Since for our purposes the index N will be fixed, we will 

suppress reference to this isomorphism and use the same label for a polynomial 

and its associated symmetric linear functional. More details about the above 

relationships may be obtained from [M] or JR1]. 

If the space PN of N-homogeneous analytic polynomials on a complex Banach 

space X is reflexive, we will simply say that X is :PN-reflexive. If this is true 

for every N then we will say that X is polynomial ly  reflexive. Polynomial 

reflexivity passes to quotients, because polynomials always lift from quotients, 

though they do not in general extend from subspaces. In the presence of the 

approximation property, polynomial reflexivity is equivalent to weak sequential 

continuity of polynomials [see AAD], and it is this property which we can more 

readily relate to the geometry of spreading models on the space. 

Let us recall the concept of a spreading model, the construction of which is 

due to Brunel and Sucheston [BS1]. 

Finite versions of Ramsey's Theorem allow that given any property of n-tuples 

of elements from a sequence, one can pass to a subsequence with the property 

that all n-tuples formed from thesubsequence share the property or else all fail 

it. By using the size of the norm of a sum of n elements as the property one can, 

by repeatedly applying the theorem, approximately stabilize the norm (to within 

any desired en) of any finite combination as long as many of the beginning terms 

are thrown away. More precisely we have the following fact (see [B] or [BS1]). 

PROPOSITION 1.1: Let (f~) be a bounded sequence with no norm-Cauchy sub- 

sequence in a Banach space X .  Then there exists a subsequence (e.) of (x.) 

and a norm L on the vector space S of finite sequences of scalars such that for 
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all • > 0 and all a E S (maxlai[ < 1) there exists k E N such that for alJ 

k < k l  < k2 < " "  < k M  we  have 

[ Z a , e ~ i  - L ( a )  < , .  

The completion of [ei] (call it F)  under the norm L is called a sp read ing  

m o d e l  for the sequence (en). The reason for the terminology is that the sequence 

(e~) is invariant under spreading with respect to the norm F, that  is to say, 

for every finite sequence of scalars (al) and every subsequence a of the natural 

numbers 
M M 

~-x a~ei F = ~_, a~(~)  . 
- -  " i = 1  H F 

Thus any norm estimate satisfied by sequences in the spreading model will be 

approximately satisfied for sequences of finite length to any desired degree pro- 

vided we go out far enough in the sequence (xn). If the original sequence was 

weakly null then the resulting sequence will be unconditional; that  is to say, we 

have the following (Lemma 2 of [B], or see [BS2]). 

PROPOSITION 1.2: I f  (xn) is weakly null, then the sequence (en) is unconditional 

in F with unconditional constant at most 2. 

Now we state the main theorem of the section. 

THEOREM 1.3: Suppose X is a reflexive Banach space. Then, 

(i) I f  no spreading model built on a weakly null sequence has a lower q-estimate 

for any q < co then any polynomial on any subspace of X will be weakly 

sequentially continuous at the origin. Thus every subspace of X with the 

approximation property will be polynomially reflexive. 

(ii) Suppose every polynomial on every subspace of X is weakly sequentially 

continuous at the origin. Then no quotient of X* has a weakly null sequence 

with an upper p-estimate for any p > 1. 

In [AAD] it was shown that Tsirelson's space is polynomially reflexive using 

essentially the fact that T* has a basis whose only spreading model is co. What 

is actually needed is a spreading model having no lower q-estimate. Recall that  

an unconditional basis (xn) has a lower q-estimate (for some q < co) if there 

exists a constant c > 0 such that for any scalars (an), 
k k 1/q 

II a x lt >__ c (Z ,  Iool q) 
n = l  n = l  
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We will also use the equivalence shown in [AAD, proof of Proposition 4] that 

for a reflexive space which has the approximation property, PM is reflexive if and 

only if every element of ~O M is weakly sequentially continuous at the origin. We 

now proceed to the proof of the first part of the theorem; the proof of the second 

part is deferred until Section 4 (it follows from Theorem 4.1), where we relate 

polynomial reflexivity to some properties of algebras of analytic functions and 

the topologies they generate on the space. 

Proof of (i): Suppose that P E /)M is not weakly sequentially continuous at 

the origin. Then there is a (without loss of generality normalized) weakly null 

sequence on which P is bounded away from zero in modulus, and we can by 1.1 

build a spreading model on a subsequence of it. Since the underlying sequence 

is weakly null, the spreading model will be unconditional, by 1.2. Passing to the 

subsequence and relabeling we have that for some e > 0, 

[P(xi)] > e Vi > l. 

Now notice that for fixed x and y, P(x + Ay) = ~-~M ajAJ is a polynomial of 

degree M on the complex numbers with constant coefficient ao = P(x) and M- 

th coefficient aM = P(y). This can be seen for example by writing out the 

M-linear form associated with P: 

Ap(x + Ay, x + Ay,...) = Ap(x,x,. . .)  + AAp(y,x,...) +. . .  + AM Ap(y,y,...). 

We then have 
2 

'P(x)I2+Ip(y)'2='a°I2+IaM'2<-(~0 'aJl2) --- suplAl<l ~o ajAj =P(x+~y)2 

for an appropriate choice of y with 17/I = 1. 

If we apply the above fact repeatedly to any subset A of the (x~) of size 2 t, we 

can findiA~ I = 1 ,  i = 1 , . . . , 2  t s o t h a t  

['PI' (iE~AAiXl)M__~ p(iE~AA,Xl ) >e(V~) ' .  

We can use this to obtain norm estimates for the spreading model if we confine 

ourselves to considering sets which begin far enough out in the sequence; since 

the above is true for all subsets of size 2 ~, we may say 

[~EA Aixi --~2 /E~AAiXi F 
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where F is the spreading model. Using the unconditionality of the spreading 

model (we know it has unconditional constant < 2), we have 

A~x~ < 2 E e~A~x~ 

for all choices ]ei]= 1. 

Combining the above we obtain 

i~EAei~iXi >-- C(21) 1/2M 
F 

where C = I_{e.__K_,~I/M 
4~,11pl[ ] • 

Although we have shown this for sets of size 2 l, we can now modify the con- 

stant and obtain a similar statement for sets of any size. Now choose q > 2M 

and by applying the following standard lemma (with r = 2M) we will have an 

unconditional spreading model with a lower q-estimate. 

LEMMA 1.4: Suppose (xl) is a normalized unconditional basic sequence with the 

property that for subsets A of the integers, 

cII ~ x, II ~ IZl 1/'. 
iEA 

Then/'or every q > r there is another constant C' so that for all sets B 

c'll Z a,x, II >_ ( Z  i~,l ~) '/~. 
iEB iEB 

Proof: Let 

oo 1/ r  
D = (~-'~ 2 ( - i - 1 ) ( q - r ) )  

i=l 
and An = {i • BI2-"  _> ai > 2 - " - 1  } 

where B is a subset of N and K is the unconditional constant. Assume that  
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max{[a,[} = 1 and write 

o o  

2Kvcll E o,x, II =2 vcll E E o,x ll 
i6 B n=O i6 A. 

> VCsup2-"-lll ~ x, ll 
n i6An 

1/r o o  

> sup{2-'~-llA.[X/~ } ( E  2(-'-1)(q-~)) 
n i=0  

o o  

>_ (n~=O(2-n-1)rlgn, 2(-n-l)(q-r)) 1Iv 

1/r o o  

oo 1/q 
>__ 21-q/r(n~=o(2-n-1)q[An[) 

_> 2_q/" ( ~  la, lq)l/~ 
iEB 

which completes the proof of the lemma by giving C' = 2~+IKDC. Since the 

condition of having no unconditional spreading model with a lower q-estimate is 

hereditary we see that every polynomial on every subspace of X will be weakly 

sequentially continuous at the origin. I 

Remark: It is worth noting that we have actually proved the following: If X 

is reflexive with the approximation property and has no spreading model with a 

lower q-estimate (for some fixed q), then X is PM-reflexive for all M < q/2. 

2. PN-Reflexivi ty  

In this section we note the following equivalences. 

PROPOSITION 2.1: The following are equivalent for any Banach space X, and 

any fixed (extended) positive integer m. 

(i) For all N <_ m, the restriction of an N-homogeneous polynomial to a weakly 

compact subset of X is weakly continuous. 

(ii) For all N <_ m, any N-homogeneous polynomial on X is weakly sequentially 

continuous. 
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(iii) For all N < m, the function 0 taking each x E X to the corresponding 

diagonal dement  in X ~ . . .  ~ X  (N times) is weak-to-weak sequentially 

continuous. 

(iv) For all N <_ m, ~ is weak-to-weak sequentially continuous at the origin, that 

is, if  {xk }k°°~l is a weakly null sequence in X ,  then {xk ® xk ® ' "  ® xk } is 

a weakly null sequence in X ~ X ~ . . .  ® X (57 times). 

(v) For all N <_ m, the restriction of 0 to any weakly compact subset of X is 

weak-to-weak continuous. 

These equivalences were proved in [CCG] (for the case m = ee) and so we will 

only sketch the proof here. 

It is clear that (i) is merely a restatement of (v) and (ii) of (iii). That (i) 

implies (ii) is obvious, and that (ii) implies (i) follows from 7.2 of [CCG] which 

essentially points out that because of the Eberlein-Smulian Theorem it is enough 

to check weak continuity using sequences if one is restricted to a weakly compact 

set. That (iii) implies (iv) is trivial, while the converse follows by writing P(x~) 

as P(x  - (x - x n ) )  and expanding the m-linear form associated with P as we did 

in the proof of Theorem 1.3. One can then assume by induction on N that the 

mixed terms will go to zero and this finishes it. | 

Now Ryan [R1] characterized the reflexivity of PN by the weak continuity of 

each element of :PN on the unit ball, and [AAD] showed that it is enough to check 

this at the origin (all this in the context of reflexive spaces with the approximation 

property). Thus it is clear that in this context the above equivalences actually 

characterize PN-reflexivity. 

3. Tensor  p r o d u c t s  and  o p e r a t o r s  on  p o l y n o m i a l l y  ref lexive  spaces  

We next generalize some of the results of Alencar, Aron and Fricke [AAF], in 

which it is shown that projective tensor products of Tsirelson space are reflexive 

[AAF, Proposition 1] and operators from these products into ~p spaces (1 _< p < 

c~) are all compact [AAF, Corollary 8]. These results of [AAF] can be subsumed 

and generalized by the following. 

We first recall from [FJ] that a Banach space is p o l y n o m i a l l y  Schur  

(PN-Schur)  if whenever a sequence converges to zero against every polynomial 

(respectively, every N-homogeneous polynomial) then it must tend to zero in 

norm. 
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THEOREM 3.1: Suppose X is polynomially reflexive (PN-reflexive) and has the 

approximation property, and suppose that Y is polynomially Schur (respectively, 

PN-Schur). Then every bounded linear operator from X to Y is compact, and if 

in addition Y is reflexive, then B(X,  Y)  = K(X,  Y)  is also reflexive. 

Proo~ Suppose without loss of generality that (xn) is a bounded sequence in 

the ball of X which converges weakly to zero. Then (xn) converges polynomially 

(N-polynomially) to zero, and therefore so does T(xn) (where T is any operator). 

But since Y is polynomially Schur ('PN-Schur), T(xn) must converge to zero in 

norm. The second statement follows by standard duality arguments (see [DU, p. 

247]). R 

Note that (as a consequence of 2.1 (iv)) the symmetric projective N-fold tensor 

product of a polynomially reflexive space is also polynomially reflexive. In fact, 

the N-fold projective tensor product of a PgM-reflexive space is 7~M-reflexive. 

This fact allows us to extend 3.1 to the context of vector-valued polynomials. 

THEOREM 3.2: Suppose X is polynomially reflexive (TaMN-reflexive) and has the 

approximation property, and suppose that Y is polynomially Schur (respectively, 

7aN-Schur ). Then every bounded (vector-valued) M-homogeneous polynomial 

from X to Y is compact. 

Proof: The proof follows the same lines as 3.1, using the above remark. | 

Since T* is polynomially reflexive and all gp spaces are polynomially Schur 

(1 < p < oc) [CCG] we now obtain [AAF, Proposition 8] as a corollary. 

The final result of [AAF] will also generalize. 

PROPOSITION 3.3: Let X be a Banach space with an unconditional basis. Then 

X is polynomially reflexive if and only if for every polynomially Schur space 

Y, (H(X,  Y), r) (the space of all holomorphic functions from X to Y with the 

Nachbin topology) is reflexive. 

Proof: We simply check that  in [AAF, Corollary 9] the only fact used about 

(H(T*, ~p), T) is that  the spaces 7)N(T *) are all reflexive. | 

4. B o u n d e d  analyt ic  funct ions  on  the  unit  ball 

In this section we relate polynomial reflexivity to some questions about algebras 

of analytic functions defined on the unit ball B of a dual Banach space X. For our 
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purposes, .A(B) will be the uniform closure of the algebra generated by the weak- 

star continuous linear functionals, and 7-/~(B) will be the algebra of bounded 

analytic functions on the open unit ball. 

Carne, Cole, and Gamelin have considered various topologies induced on the 

ball B by considering it as a subset of .A(B)* via evaluations. The topologies 

induced by the norm, weak and weak-star topologies of A(B)* can then be com- 

pared to the usual topologies on the ball. In fact, :P-Schur spaces are of interest 

for exactly this reason, since (at least if X has the metric approximation prop- 

erty) every polynomial on B is the restriction of some element of .A(B)** to the 

ball (i.e. to the point masses); thus for these 7~-Schur spaces a(.A(B)*, .A(B)**) 
convergence of a sequence of point masses will force the points to converge in 

norm in B. 

Our notation in general will follow [CCG]. We will denote by .Apb(B) the al- 

gebra of functions pointwise approximable by bounded nets of functions from 

A(B) and recall from [CCG] that ,Apb(B) C 7"~(S) is always true; the reverse 

inclusion holds if X has the metric approximation property. The set .Apb(B) is 

important because it is exactly the set of all elements of .A(B)** restricted to B. 

One question raised in [CCG] concerned whether the algebra A(B) is "tight." 

There it was conjectured that  in the case of an infinite-dimensional Banach space 

X, .A(B) is never tight. Indeed, those authors showed that for many classes of 

Banach spaces this is so. The ball algebra on a polynomially Schur space cannot 

be tight; neither can that  of a nonreflexive space, nor a space which has gp as 

a quotient; Jaramillo and Prieto [JP] also conclude that for a separable space 

tightness will require that every point of the unit sphere be complex extreme. 

Tightness is an analytic function theoretic concept that  we will not define at 

the moment; what concerns us here is that a consequence of tightness is the 

agreement of the a(A(B)*,.A(B)**) topology with the weak-star topology on 

balls of radius less than one. In fact, it is this agreement of topologies from 

which many of the results in [CCG] concerning tightness are deduced; we will 

focus on this agreement itself. 

A consequence of our first theorem will be that the only class of Banach spaces 

for which the ball algebra may be tight are the polynomially reflexive ones (or 

at least those with all polynomials weakly sequentially continuous); this will be 

found to subsume and extend several of the aforementioned results. (Part  of the 

following theorem was proved by participants in an informal seminar organized 
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by W. B. Johnson.) 

THEOREM 4.1: Consider the following statements, for a reflexive Banach space 

X: 
(i) X* has an unconditional spreading model (built on a weakly null sequence) 

with an upper p-estimate for some p > 1. 

(ii) The a(A(B)*, A(B)**) topology does not agree with the weak topology on 

rB,  for r <: 1. 

(iii) There is an N-homogeneous polynomial (for N > p') on X which is not 

weakly sequentially continuous. 

Then (i)=~(ii)~(iii). If, in addition, X has the approximation property, then 

(i i i)~(ii)  and (as stated previously) (iii) is equivalent to the statement that X is 

not P~-reflexive. 

Proof  that (i) implies (ii): Let (ei)* be the sequence on which the spreading 

model is built. We can assume by passing to a subsequence that  it is basic. Call 

its closed span E* with predual E,  a quotient of X,  with r the natural quotient 

map, and (ei) the dual basis in E. Find (x~) in X with 7r(xl) = ei with (xi) 

weakly null (by passing to a subsequence if necessary). Choose N > p' and 

define 
k 

Pk ~-- ~-~ ei *N. 
i=1 

It is a consequence of the proof of 3.3 of IF J] that  the norms of these N- 

homogeneous polynomials are uniformly bounded (although we may need to pass 

once more to a subsequence, it does not affect the result). Consider the sequence 

{Pk o r}k°¢=l • A(B) as a subset of A(B)** and take Q to be any weak-star limit 

point. Le t /~  be any ultrafilter on the integers and calculate 

x~ = lim P k o ~  x~ = lim el = 
kEUCU kEUcLI 

In fact, this element Q, considered as a function on the ball, is a bounded poly- 

nomial, giving (iii) as well as (ii). 

Proof that (ii) implies (iii): Since X is reflexive we need only consider weak 

sequential convergence. Suppose that (xi) converges weakly to x • rB. We will 

show that  if all polynomials are weakly sequentially continuous, then the sequence 

converges a(A(B)*, A(B)**). Consider F • A(B)**. Again by considering F as 
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a function on the point masses we can think of F I ~  as an element of 7-/~(B) (we 

will write it also as F).  We can write its Taylor series which converges pointwise 

on B: 
o o  

F = ~-~fl with Ilfill <-IIFli • 
i----1 

For r < 1 and e > 0 we can calculate 

Hence, 

llf~l~Bll = sup Ifi(x)l-- sup Ifi(rx)l = r~llf~ll. 
x E r B  x E B  

o o  o o  o o  

11 Z :, ..II -< ~ II:, ..II = ~' Zr'-'i1:~ll 
i = k  i----k i-~k 

o o  

< rkZrJi lFi  I < rk IIFII (1--~) < ~ 
j=O 

by choosing k large enough. Since all polynomials (in particular the fi) are 

weakly sequentially continuous, we can have 

k--1 k - t  

IF(xj)- F(x)l __ I •  :~(xj)- Z :~(x)I + 2~ < 3~ 
i=1 i----1 

by picking j large, and so we are done. 

To prove the last statement we use the fact [DU] that  if a reflexive space has the 

approximation property, then both it and its dual have the metric approximation 

property. So suppose that  we have a polynomial that  is not weakly sequentially 

continuous at the origin, that  is, let (xi) converge weakly to zero with P(xl) 
bounded away from zero. Let e~ go to zero, and let Ti be finite rank operators 

i which approximate the identity on (xk)k=l within a factor of ei, with norms of 

the Ti uniformly bounded. Then P o Ti are finite-type polynomials and so are 

T clearly in A(B).  Let F be any weak-star limit of the set {P o i}~=l in A(B)**. 
Since P is uniformly continuous on bounded sets (say with modulus 5), we can 

see that  given k and 6' we can find i > k so that  

L F ( x k )  - PT~(xk)l S ~(e~) + 6' 

which implies that  F(xk) 74 O. i 

We can now state the following corollary of this result. 
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COROLLARY 4.2: Suppose X has the approximation property and ,A(B) is tight. 

Then 7~N(X) is reflexive for all N >_ 1. 

Although T* is an example of a polynomially reflexive space, Jaramillo and 

Prieto [JP] show that  the ball algebra of T* is not tight. This results from 

having points on the sphere which are not complex extreme, however, and if we 

consider (for example) the 2-convexification of T*, we have a space which is still 

polynomially reflexive but for which the question of tightness is still open. Of 

course it may be that  the ball algebra is never tight if X is infinite-dimensional. 

We now turn to characterizations of polynomially reflexive spaces in terms of 

the algebra 7~°~(B). First we recall that  the spectrum of a uniform algebra is 

the topological space of complex homomorphisms on the space; the topology is 

the relative weak-star topology from the unit sphere of the dual space of the 

algebra. The spectrum A4nOo(B ) fibers over the unit ball of X** by restricting 

each complex homomorphism to the elements of X*. 

PROPOSITION 4.3: The following are equivalent for any dual Banach space X 

whose dual has the approximation property. 

(i) X is polynomially reflexive. 

(ii) ~N X is reflexive for all N. 

(iii) Every f in ~°°( B) has a homogeneous expansion O.e., Taylor series) whose 

partial sums are all weak-star continuous. 

(iv) Every f E ~ ( B )  is weak-star continuous on rB for any 0 < r < 1. 

Remark: Of course, in the case where these equivalent conditions hold, the weak 

star topology coincides with the weak topology, so that  the above statements (iii) 

and (iv) still hold for the weak topology. 

Proof'. (i) and (ii) are trivially equivalent; (iii) and (iv) are equivalent because 

the Taylor series converges uniformly on balls of radius less than 1; the fact that  

(i) and (iii) are equivalent follows from the remark at the end of Section 2. | 

To consider some other characterizations of polynomially reflexive spaces, we 

need to recall some results from [DG] about the polynomial-star topology. We say 

that  a net {x~} in B** (the unit ball of X**) converges to x** in the polynomial- 

star topology if P(xa) ~ Px** for every polynomial P on X, where /3 is the 

canonical extension of P to the ball of the second dual. This extension was first 

defined by Aron and Berner [AB], and was shown to be defined on the entire ball 
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of the second dual by Davie and Gamelin. It is constructed by writing the linear 

form associated with the polynomial and extending it by weak-star continuity 

one coordinate at a time. Davie and Gamelin [DG] then showed that the unit 

ball of any Banach space X is polynomially-star dense in the ball of X**. In fact 

they proved that if x** is a weak-star cluster point of any set S in X, then it is 

in the polynomial-star closure of the convex hull of S. They also showed that 

any bounded analytic function on the unit ball of X has a canonical extension 

to a bounded analytic function on the unit ball of X** with the same norm; 

this extension is formed by extending the terms of the Taylor series (which are 

homogeneous polynomials) as described above. Thus every point x** in the ball 

of X** gives a homomorphism in the spectrum via evaluation of the canonical 

extension. A question of Davie and Gamelin was how one can distinguish this 

evaluation from the other homomorphisms in the fiber over x**. We can give a 

partial answer to this question. 

PROPOSITION 4.4: Suppose a net 6~  ~ ¢ E A4 in the Gelfand topology and 

x~ ~ z** in the weak-star topology o f  X**, wi th  [Ix~ I[ < 1 - e for some e > O. 

Then x~ -* z** in the polynomial-s tar  topology i f  and only i f  ¢ = 6z**. 

Proof'. We first prove that  the condition is sufficient. We may assume with- 

out losing anything that the x~ are in X. For every f E ~°~(B) there ex- 

ists a sequence of polynomials P{ so that Pi will converge uniformly to f on 

(llz**]I + ~)B**). We then have 

¢ ( f )  - - l i m f ( x ~ )  - - l iml imP, (xa )  

which by uniform convergence of the Pi equals 

l imlimP,(x~) = limP~(z**) = ](z**).  

On the other hand, suppose that the convergence is not polynomial-star and 

choose a polynomial P for which the convergence fails. Write 

5z . . (P)  = P(z**) ¢ l imP(x~)  = ¢(P) .  I 

In answer to the question of how to identify the evaluations, we can thus say 

that  for ¢ E clB C Mn~(B)  with ¢ in the fiber over z** E B**, we have ¢ = ~** 

if and only if for every net x~ such that [[x~[[ _< A < 1 and ~,~ ~ ¢ we have that 

x~ converges polynomial-star t ° z**. 

We now relate these ideas to polynomial reflexivity. 
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THEOREM 4.5: The following are equivalent for any Banach space X, and thus if 

X is reflexive with the approximation property, they are equivalent to polynomial 

reflexivity: 

(i) Every bounded net in X which is weak-star convergent in X** is poly- 

nomial-star convergent. 

(ii) Suppose there exist r < 1 and ¢ E cl rB** C A4 lying in the fiber over 

z** E rB**. Then ¢ = 5z*-. 

(iii) Whenever (x~) is a net of evaluations converging (in A4u~(B)) to a nonzero 

element in the fiber over zero, one must have IIx ll - .  1. 

(iv) Every N-homogeneous analytic polynomial on X is weakly continuous. 

Proo~ The equivalence of (i) and (ii) is a straightforward application of Propo- 

sition 4.4, and that (ii) implies (iii) is easy. We show that (iii) implies (iv) and 

that  (iv) implies (i). 

To see that  (iii) implies (iv), suppose that (iv) fails. Then there is an N and 

a P E ~PN(X) which is not weakly continuous at the origin. Take a net which 

converges weakly to zero but such that P(x~) does not converge to zero; by 

scaling down by 1 we may assume that the net is bounded away from the sphere, 

and since the spectrum is compact there is a cluster point for this scaled down 

net (thought of as point masses) in A4n~(B). This cluster point must have a 

nonzero value at P; thus (iii) fails. 

Finally suppose that  {x~} converges weak-star to x** E X**. First we consider 

the subspace X @ Ix**] of X**; we show that the property (iv) passes from X 

to this space. If {x~ ÷ fl~x**} is weakly null then either {x~} is weakly null 

and {~ :~}  tends to zero, or (by passing to a subnet) ~ --~ ~ and (x~) -~ -f~x** 

weakly. We want the canonical extension of any N-homogeneous polynomial on 

X to tend to zero when evaluated against this net. In the first of the above cases, 

this is trivial; in the second case, we can expand the associated N-linear form 

and verify the result by induction. 

Now that  we know X @ Ix**] has the property (iv) (whenever X does), we know 

that the canonical extension of any polynomial P, when restricted to X ~ [x**], is 
A 

weakly continuous. Thus P(x~) --+ P(x**), and so x~ converges polynomial-star 

to x**. l 
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